

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI SCIENZE MEDICHE E CHIRURGICHE

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bolog

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton May 8-9, 2023

President: Pier Luigi Zinzani

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton, May 8-9, 2023

Update of PTCL in 2023: Focus on 'nodal' subtypes

Kerry J. Savage MD MSc FRCP(C) Medical Oncologist, BC Cancer Professor of Medicine, University of British Columbia May 9, 2023

Disclosures

- Honoraria/consulting: BMS, Merck, Seagen, Janssen
- Steering committee: Beigene
- Research funding: BMS
- Institutional research funding: Roche
- DSMC: Regeneron

Nodal PTCL classification updates

2017 WHO 4 th Edition	2022 International Consensus Classification (ICC)	2022 WHO 5 th Edition	
PTCL-NOS	PTCL-NOS	PTCL-NOS	
Not listed as entity, included with PTCL-NOS	Primary nodal EBV+ T/NK-cell lymphoma	EBV+ nodal T-and NK-cell lymphoma	+
ALK-positive, ALCL	ALK-positive, ALCL	ALK-positive, ALCL	l
ALK-negative, ALCL	ALK-negative ALCL DUSP22R+ genetic entity	ALK-negative ALCL	
<u>Nodal lymphomas of T-</u> <u>follicular origin</u> Angioimmunoblastic T-cell lymphoma	Follicular helper T-cell lymphoma angioimmunoblastic type (angioimmunoblastic T-cell lymphoma)	<u>Nodal TFH cell lymphoma</u> , angioimmunoblastic-type	
Nodal PTCL with TFH phenotype	NOS	NOS	
Follicular T-cell lymphoma	follicular type	follicular type	

36

48

60

1989-2018

ALCL NOS

12

0%

0

PTCL NOS

24

Outcome of nodal PTCL in large retrospective studies

Progression-free survival (5-year)

Subtype	ITLP	Swedish	Netherlands
ALK +	60%	63%	-
ALK -	36%	31%	-
PTCL-NOS	20%	21%	-
AITL	18%	20%	-

Overall survival (5-year)

Subtype	ITLP	Swedish	Netherlands
ALK +	70%	79%	72%
ALK -	49%	38%	52%
PTCL-NOS	32%	28%	32%
AITL	32%	31%	44%

Vose et al. JCO 2012; Ellin et al. Blood 2014; Brink et al. Blood 2022

Genetic heterogeneity of ALK-Neg ALCL

DUSP22 rearrangement (DUSP22R) ALK-neg ALCL: Key features

- 20% to 30% of all ALK-neg ALCL
- Hallmark cells; doughnut cells (inset)
- Cytotoxic marker neg; pSTAT3 neg; PDL neg
- High expression of cancer testis antigen (CTA); DNA hypomethylation
- MSC^{E116K} mutation

Parrilla Castellar ER, et al. Blood. 2014;124:1473-80; b. Pedersen MB, et al. Blood. 2017;130:554-557; c. Luchtel RA, et al. Blood. 2018;132:1386-1398.; d. King et al. Am J Surg Pathol. 2017;40:36-43; Luchtel et al. Blood 2019.

Is there High(er) risk DUSP22R ALK-Neg ALCL?

Hapgood G, et al. Br J Haematol. 2019;186:e28-e31; Adapted from Sibon D, et al. Haematologica 2022

Past strategies to improve upon CHOP in PTCLs

Add consolidative ASCT

Was the therapeutic bar moved?

Maybe (?) – no RCT

- Dose intensity maybe important in a minority
- -?Subtype specific differences
- Benefit may be limited to those in a CR

• Add etoposide (CHOEP)

Unknown (?) – no RCT

-Primary benefit from retrospective studies ALKpos and patients < 60 y

-More toxic

 Build a new chemotherapy backbone – gemcitabine based

No

SWOG PEGS (2 y PFS 12%)

UK RPh2 (CHOP vs GEM-P) Negative study

-?Importance of alkylators or anthracyclines (mixed results)

• Add drug 'X' to CHOP

No and Yes

Improving upon CHOP in PTCLs

Was the therapeutic bar moved?

Most popular trial design
 →Add novel agent 'drug
 X' to CH(O)P backbone

-No: CHOP + Alemtuzumab – Ph 3 trial negative 3 y PFS 28%, toxic Romidepsin - Ph 3 negative 3 y PFS ~ 39% Denileukin deftitox – Ph 2: 2 y 42.9% Bevicuzumab – Ph 2 1 y PFS 44%, cardiotoxic Everolimus – Ph2 - 2 y PFS 33% Bortezomib – Ph1/2 ORR 76% (CR 65%) – 3 y PFS 35% Pralatrexate – Ph 2 CR 66%; PFS Not reported Pralatrexate(+CEOP) Ph 2 CR 66%; 2 y PFS 39% Lenalidomide (AITL elderly) ORR 54% 2 y PFS 42.3% Lenalidomide (+ CHOEP) – Ph 1/2 CR 48%; 1 y PFS 68%; (Gr 5 n=5) -Work in progress: CHOP +

Belinostat – CR 67% Ph 1 5-Azacitadine – Ph 1 –CR 75% 1 y PFS 66.1%

-Yes: CHP + Brentuximab vedotin (CD30 +PTCLs) (Ph 3)

What hasn't worked? CHOP + novel agent negative Ph 3 trials

Lessons learned: It's not easy to combine drugs with CHOP and ongoing challenges with disease heterogeneity

Wulf et al. Leukemia 2021; Bachy et al. ASH 2021

Picking the right novel agent and right disease: CHP-BV in CD30+PTCLs

Brentuximab Vedotin (BV): Antibody-Drug Conjugate

Best clinical response Complete remission Partial remission Stable disease Progressive disease Histologically ineligible -100 – Individual Patients (n = 57)

Brentuximab Vedotin

Pro et al. JCO 2012; Pro et al. Blood

5 year follow-up pivotal trial ALCL

Phase 3 ECHELON-2 CHP-BV vs CHOP in CD30+ PTCLs

Horwitz et al. ASH 2018; Horwitz et al. Lancet Oncology 2019

CHP-BV in CD30+ PTCLs: 5 year results

	N	Events	(Months)	HR (95% CI)	p-value*
A+CHP CHOP	226 226	94 125	62.26 23.75	0.70 (0.53, 0.91)	0.0077

	N	Events	Medians (Months)	HR (95% CI)	p-value*
A+CHP CHOP	162 154	53 77	_ 54.18	0.55 (0.39, 0.79)	0.0009

	5 y PFS CHP-BV	5 y PFS CHOP
ALK-negative	49%	39%
ALK- positive	87%	67%

Adapted from: Horwitz et al Ann Onc 2021; Horwitz et al ASH 2021

What is the evidence for CHP-BV in CD30+ non-ALCL PTCLs?

CHP-BV vs CHOP subgroup analyses

15

Challenges: 1) Unplanned subgroup analysis

- 2) Small patient numbers
 - AITL: n=54; PTCL-NOS n=72
- 3) Definition of CD30 + was > 10%

Some differences in the regulatory approval of CHP-BV in newly diagnosed CD30+ PTCLs

Regulatory body	Date of approval	Approval specifics	Funding
FDA	November 2018	Broad All CD30+ PTCLs by eligibility Systemic ALCL <i>or</i> other CD30 expressing PTCL including AITL and PTCL-NOS	Yes
Health Canada	November 2019	Somewhat restricted Systemic ALCL, PTCL- NOS or AITL whose tumors express CD30	Yes
EMA	May 2020	Restricted Systemic ALCL	Yes

*Grastofil recommended with CHP-BV

Cautionary notes about consolidative auto-SCT in PTCL

1) There are no RCT demonstrating that consolidative auto-SCT improves outcome in PTCL

2) There is retrospective evidence 'for' and 'against'

3) There are few prospective trials – diverse subtype inclusion *however,*

4) The relapse risk remains high with CHOP(like) chemotherapy alone thus, it is 'considered' in most subtypes (exception ALK-pos ALCL)

Upfront transplant in PTCL: Nordic NLG-T-01 Phase 2 study

n=160 (PTCL-NOS n=62, 39%)

Impact of etoposide and ASCT: nodal PTCL < 65 y Netherlands Cancer Registry (NCR) n=1427

What is the supportive evidence for up-front ASCT? PTCL diagnosed 2014-2108 from the NCR

Landmark analysis (9 m)

Nodal PTCLs in CR: ASCT vs no ASCT

What is the role of auto-SCT post CHP-BV in CD30+ PTCLs?

 Overall, only 16% of all patients in E2 had consolidative ASCT (CHP-BV n=98, 22%; CHOP n=50, 17%)

Echelon 2 subgroup analysis

- <u>CR patients post CHP-BV</u> evaluated PFS +/- consolidative ASCT
- Bottom line: Limited analysis but ASCT post CHP-BV improved PFS
- Knowledge gaps: Are there low risk groups (esp ALCL) that can forgo ASCT?

Savage et al. ASH 2019/Savage et al. Blood Advances 2022

Randomized study of auto-SCT post CR in nodal PTCLs (TRANSCRIPT)

- Enrollment goal n= 204
- Primary endpoint PFS in CR patients
- August 2022 activated (NCT05444712)
- Dr. Bachy PI (France)

Moving away from 'one size fits' all: Subtype or biologically drive therapy

Lessons from relapsed/refractory studies

Global differences in approval of drugs for R/R PTCL

	U.S.(FDA)	Canada (HC)	Europe (EMA)
Pralatrexate (Folotyn)	Approved 2009	Approved 2018	Not approved for marketing
Romidepsin	Approved 2012 (withdrawn)*	Approved 2013 (withdrawn)*	Not approved for marketing
Brentuximab Vedotin	Approved 2011 (relapsed ALCL)	Approved 2013 (relapsed ALCL)	Approved 2011 (relapsed ALCL)
Belinostat	Approved July 2014	Withdrawn	Not approved for marketing
Crizotinib	Approved Jan 2021 (ALK- pos, 1- <u><</u> 21 y)	Not approved	Not approved

* Withdrawn due to negative Ro-CHOP v CHOP study

Challenge: All are phase 2 studies What is the comparator?

Efficacy is modest in most phase 2 studies

FDA approved drug	PTCL subtype	ORR	CR	Median DoR	Median PFS	Median OS
Pralatrexate	All PS not reported (!)	29%	11%	All 10.5 m	3.5 m	14.5 m
Romidepsin*	All PS 0/1 87%	25%	15%	All 28 m CR-not reached	4 m	11.3 m
Belinostat	All PS 0/1 78%	26%	10%	All 13.6 m	1.6 m	7.9 m
Brentuximab vedotin	ALCL PS 0/1 99%	86%	57%	All 25.6 m CR- not reached	12.6 m	All-not reached
Crizotinib	ALK+ ALCL 1- 21 y	88%	81%	-	-	-

*withdrawn in US and Canada

But, meaningful durable remissions seen in some patients

TFH lymphomas: Poster child for personalized therapy

TET2 ~ 50% to 75% *IDH2*^{R172} ~ 25% to 45% *DNMT3A* ~ 20% to 30% *RHOA*^{G17V} ~ 50% to 70%

HDAC inhibitors - romidepsin, belinostat, chidamide Hypomethylating agents – 5azacitadine, decitabine EZH2 inhibitors – valemetostat IMiDs – lenalidomide

TFH lymphomas – a disease spectrum sensitive to epigenetic therapies

HDAC inhibitors in AITL and other TFH lymphomas

Coiffier JCO 2012; O'Connor et al. JCO 2015; Shi et al. Ann Onc 2015

Some very durable remissions with romidepsin in AITL

- Update of Pivotal Phase 2 study
- N=27 AITL median age 62 y (47-76), PS 0/1 81%
- ORR 33%(CR 22%)
- Median time to response 52 days
- Median DoR not reach (1-56 months)

4 (15%) remain in CR > 3 y

Hypomethylating agents: Sustained responses with 5azacitidine in R/R AITL

- Recurrent mutations in genes involved in methylation → strong rationale to evaluate 5-aza
- 12 patients with AITL treated with 5-Aza (+/- concurrent myeloid neoplasms)

Oracle Phase 3 study: 5-aza vs investigator choice in TFHLs

Primary endpoint: PFS by investigator using CT (Cheson 2014) Power calculation: PFS improvement 5 to 12 months Superiority if p value < 0.025

* Progression assessment based on local assessment using the Lugano classification

Progression-free survival

	Median PFS	95% CI		
5-aza	5.6 m	2.7-8.1 m		
lnv choice	2.8 m	1.9-4.8 m		
	p=0.0412			

Primary endpoint for significance (p<0.025)

Overall survival

Adapated, Lemonnier, et al. ASH 2022 [Abstract #959]

Valemetostat (EZH1/2 inhibitor) Phase 1/2 PTCL expansion cohort

 Selective dual inhibitor of EZH1 and EZH2 → prevents trimethylation of H3K27

Subtype n	ORR(CR) %	DoR (m)	PFS
All PTCL 44	54(27)	14 m	12 m
AITL 17	64(47)	Not reached	12 m
PTCL-NOS 20	50(20)	14 m	16 m
ALCL 2	50(0)	Not evaluable	Not evaluable
TCL 'other' 5	40(0)	Not evaluable	4
ATLL 14	57(29)	Not reached	Not reached

Phase 2 VALENTINE-PTCL01 study has completed accrual (NCT04703192)

What about epigenetic modifiers in the front-line therapy of AITL (and other TFHLs ?

Adapted from: EHA and ICML 2021 Ishitsuka et al.

Lessons from the Phase 3 study Ro-CHOP vs CHOP study

Intention to treat: All PTCLs

TFH lymphoma Subgroup

33

Clinical trial approaches in newly diagnosed PTCL

Approach 1: CHOP (or CHP) + novel agent Approach 2: Novel agent combinations

Approach 1: Phase 1 CHOP-aza in treatment naïve PTCL (enriched for TFHL)

Key eligibility

-Nodal T-cell lymphoma with TFH phenotype (WHO 2016)
-PTCL-NOS
-ALCL, ALK-neg
-ALCL, ALK-pos with IPI > 2
-ATLL

• Median age 66 y (22 – 77y)

	ORR	CR	
All n=21	75%	75%	
TFHL n=17	88%	88%	-

Adapted from Ruan et al ASH 2021

Approach 1 CHO(E)P +/- duvelisib or 5-aza in treatment naïve PTCL

Alliance Randomized Phase 2 (activated NCT04803201)

PI N Mehta-Shah

Primary endpoint PET CR

Approach 2: Romidepsin + 5-azacitidine in treatment naïve PTCL

2 pts excluded from response analysis (1 each TN and RR): rectal bleed (rectal cancer) + fatal sepsis Phase 2 study n=25 relapsed/refractory AND treatment naïve PTCLs

→ Treatment naïve n=11 (TFH/AITL n=8)
ORR 70% CR 50% (n=10 evaluable)

→ Relapsed/refractory n=14* ORR 54% CR 38% (13 evaluable) *includes 5 pts from expansion ph 1

TFH PTCL n=17 ORR 80% CR 60%

Grade 3/4

Thrombocytopenia 48% Neutropenia 40% Febrile neutropenia 12%

Other therapies under investigation in R/R PTCL

Targeted therapy	Class	Subtype	ORR/CR
Duvelisib PRIMO	PI3 $oldsymbol{\gamma} oldsymbol{\delta}$ inhibitor	All	50%/32%
Cerdulatinib	Pan JAK/SYK inhibitor	ALL(+++TFHPTCL)	All 35% TFHL 52%
Tipifarnib	Farnesyltransferase inhibitor	ALL(+++TFHPTCL)	CXCL12 3'UTR 42/25% AITL 45/27%
Ruxolitinib	JAK 1/2 inhibitor	++ JAK/STAT mutations or pSTAT3	25 (JAK/STAT 44%) TFH 33%
Golidocitinib JACKPOT8	JAK1 inhibitor	All	43%/22% (preliminary) (look for ASCO 2023 update)

Summary PTCL in 2023

Primary therapy

- New treatment paradigm: CHP-BV in CD30+ PTCLs
 - CD30+ non-ALCL? Other CD30+ PTCL not well represented (ETTL separate Ph2)
- CD30 PTCL Optimal trial design?: CHOP + X vs novel agent combinations (what is the curative potential?)
- Consolidative auto-SCT ? forgo in low risk patients (IPI and 'classic' DUSP22R) ?Role of PET + cfDNA for MRD

Relapsed/refractory PTCL

- Personalized approach is here for TFH PTCLs
 additional studies needed of 'typical' mutation profile and response
- Combination therapies induce deeper responses, watch for toxicities
- In all trials, integration of rich correlative studies